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Machine Learning Algorithms and Economic Models

ML algorithms have demonstrated tremendous predictive success.

But for economic models, care about criteria besides
predictiveness:

are the model’s parameters interpretable economically?

is the model descriptive only of a specific behavior, or is it a
good abstraction more broadly?

does the model convey a useful narrative that shapes a
perspective on a behavior or domain?
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This Talk

Can black box techniques still be useful to the economic modeler?

This talk: yes.

Slides will explore a series of methodologies and their applications to
specific economic problems.

Predicting and Understanding Initial Play, AER, 2019
(with Drew Fudenberg)

Measuring the Completeness of Economic Models, JPE, 2022
(with Drew Fudenberg, Jon Kleinberg, and Sendhil Mullainathan)

How Flexible is that Functional Form? Measuring the
Restrictiveness of Theories, conditionally accepted at REStat, 2023

(with Drew Fudenberg and Wayne Gao)

The Transfer Performance of Economic Models, 2023
(with Isaiah Andrews, Drew Fudenberg, Lihua Lei, Chaofeng Wu)
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Part I:

Black Box Prediction as

a Predictive Upper Bound

Measuring the Completeness of Economic Models, JPE, 2022
(Fudenberg, Liang, Kleinberg, and Mullainathan)



An Example Problem: Predicting Human Generation of
Random Sequences

Of interest: human (mis)perception of randomness

Specific problem instance:

suppose a human is asked to generate eight realizations of
{H,T} as if flipping a fair coin

you have access to the first seven flips

can you predict the eighth?

Prediction rule: Any function f : {H,T}7 7→ [0, 1] (probability final
flip is H).

Loss function is mean-squared error: (p − s8)2 when prediction is
p ∈ [0, 1] and actual final flip is s8 ∈ {0, 1}
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Behavioral Model: Rabin and Vayanos (2010)

Behavioral model: humans think “random” means “negatively
auto-correlated”

If last flips were HHHH, then T “is due”

Rabin and Vayanos (2010):

Pr(s8 = H | s1, . . . , s7) =
1

2
− α

7∑

k=1

δk1(s8−k = H).

Two parameters: α measures strength of negative auto-correlation,
δ measures a recency effect.



How Predictive is the Behavioral Model?

Data set: 22K human-generated strings on Mechanical Turk.
Tenfold cross-validated error:

Prediction Error

Rabin and Vayanos (2010) 0.2494
(0.0003)

But what does this number mean?
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Model is Predictive

Can get a sense of size by comparing against a naive model: guess
1/2 for every sequence.

Prediction Error

Naive Baseline 0.25

Rabin and Vayanos (2010) 0.2494
(0.0003)

This shows us that the behavioral model improves on random
guessing (the behavioral model is predictive).

But it still doesn’t help us to understand the margin of
improvement.
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Two Very Different Explanations for Error

Key confound: error can emerge from

suboptimal combination of features

can reduce prediction error by writing down a different model
negative auto-correlation isn’t the full story

basic limitations of the feature set (first seven flips)

can’t reduce predictive error with a new model based on the
same features
instead need to acquire/measure new features
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Table Lookup

Straightforward problem for an ML algorithm. Given enough data,
solution is to use a Table Lookup algorithm.

s1 s2 s3 s4 s5 s6 s7 probability that s8 = H
H H H H H H H p1
H H H H H H T p2
H H H H H T H p3
...

...
...

...
...

...
...

...
T T T T T T T p128

This model has 27 free parameters, none economically meaningful.

trained on sufficient data, table lookup approximates best
achievable accuracy
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“Achievable” Predictive Accuracy

Prediction Error

Naive Baseline 0.25

Rabin and Vayanos (2010) 0.2494
(0.0003)

Table Lookup 0.2441
(0.002)

Black box performance is far worse than perfect prediction
(large amount of irreducible noise)

For the given features, 0.2441 represents “predictive limit.”

Naively comparing the model’s performance against perfect
zero grossly misrepresents performance!
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Completeness

Prediction Error Completeness

Naive Baseline 0.25 0%

Rabin and Vayanos (2010) 0.2494

10%

(0.0003)

Table Lookup 0.2441 100%
(0.002)

Simple measure of completeness is ratio of achieved versus
achievable improvement: (0.25− 0.2494)/(0.25− 0.2441)
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Part II:

Use Black Box to

Discover New Structure

Predicting and Understanding Initial Play, AER, 2019
(Fudenberg and Liang)



Problem Domain: Predicting Initial Play in Games

Problem:

a1 a2 a3
a1 25, 25 30, 40 100, 31
a2 40, 30 45, 45 65, 0
a3 31, 100 0, 65 40, 40

What is the modal action chosen by people in the role of the
row player?

Prediction rule: Any map f : R18 → {a1, a2, a3} from payoff
matrices into row player action.

Loss function: misclassification rate.



Models

Uniform Nash: Choose uniformly at random from actions
consistent with (pure-strategy) Nash equilibrium.

Level 1: Predict the action that maximizes expected payoffs when
the other player chooses uniformly at random.

e.g. action a1 is the Level 1 action here:

a1 a2 a3 Average Payoff
a1 25, 25 30, 40 100, 31 51.6
a2 40, 30 45, 45 65, 0 50
a3 31, 100 0, 65 40, 40 23.6
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Machine Learning Approach

Identify each game with a feature vector describing various
known strategic properties.

e.g. for each action:

is it part of a pure-strategy Nash equilibrium?
is it part of a profile that maximizes sum of player payoffs?

Train a decision tree ensemble to predict modal action given
features.



Comparison of Prediction Accuracies

Tenfold cross-validated classification rate on meta-data set from
six lab experiments (86 total games):

Accuracy

Naive Baseline 0.33

Uniform Nash 0.42
(0.05)

Level 1 0.72
(0.04)

Decision Tree Ensemble 0.77
(0.02)
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Identifying Predictable Structure Beyond Level 1

Look at games where the modal action is correctly predicted
by our algorithm but not by Level 1.

opportunity for identifying new regularities that are missed by
the behavioral model

Example game:

a1 a2 a3 Average Payoff
a1 25, 25 30, 40 100, 31 51.6
a2 40, 30 45, 45 65, 0 50
a3 31, 100 0, 65 40, 40 23.6

Level 1 action is a1, but a2 played most frequently

Modify Level 1 by giving participants utility functions
u(x) = xα; this adds one parameter to the Level 1 model

α ∈ [0, 1) captures risk aversion
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Extension of Level 1 Achieves Performance of Algorithm

Accuracy
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Level 1(α) 0.79
(0.04)

Black box algorithm can lead to interpretable extensions of
behavioral models
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Takeaways from Lab Games

Could stop here and conclude that Level 1(α) is an almost
complete model of play

But set of games in our data was small and special

Is the performance of Level 1(α) due to idiosyncratic
properties of the data set?

What regularities exist outside of this data?

Space of payoff matrices R18 is large—how to populate this
space in a useful way?
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Part III:

Use Black Box to Find Cases

That Break Our Best Model

Predicting and Understanding Initial Play, AER, 2019
(Fudenberg and Liang)



Algorithmic Experimental Design

Approach:

Teach an algorithm to recognize games where Level-1(α)
performs poorly.

Randomly generate games.

Use algorithm to predict performance of the model on these
randomly generated games.

Keep the games where the model is predicted to perform
poorly.

Repeat.
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Step 1: Train Algorithm to Predict Freq of Level 1 Play

a1 a2 a3
a1 40, 40 10, 20 70, 30
a2 20, 10 80, 80 0, 100 freq. of Level 1(α) action: 73%
a3 30, 70 100, 0 60, 60

a1 a2 a3
a1 20, 20 0, 60 100, 0
a2 60, 0 20, 20 0, 60 freq. of Level 1(α) action: 65%
a3 0, 100 60, 0 40, 40

a1 a2 a3
a1 20, 20 30, 40 100, 30
a2 40, 30 40, 40 60, 0 freq. of Level 1(α) action: 35%
a3 30, 100 0, 60 40, 40

learn a map from payoff matrices into prediction of frequency of play
of Level 1(α) action



Step 2: Generate New Games, Predict Freq of Level 1 Play

a1 a2 a3
a1 90, 90 30, 80 45, 30
a2 80, 30 55, 55 37, 5

predicted frequency: 48%

a3 30, 45 5, 37 70, 70

a1 a2 a3
a1 70, 70 45, 30 40, 35
a2 30, 45 53, 53 93, 31

predicted frequency: 56%

a3 35, 40 31, 93 10, 10

a1 a2 a3
a1 60, 60 40, 40 51, 40
a2 40, 40 80, 80 35, 10

predicted frequency: 46%

a3 40, 51 10, 35 100, 100

learn a map from payoff matrices into prediction of frequency of play
of Level 1(α) action
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Step 3: Redraw Games with High Predicted Frequencies
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Performance on New Games

Accuracy

Guess at random 0.33
Level 1 0.36

(0.01)
Level 1(α) 0.41

(0.05)

Decision Tree Ensemble 0.73
(0.02)

Algorithmically designed games succeed in being poor
matches for Level 1 and Level 1(α).
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Best 2-split Decision Tree

Decision tree ensemble is hard to interpret, but best 2-split
decision tree is not:

Is action a1 part of a
Pareto-dominant NE?

predict a3predict a2

Is action a2 part of a
Pareto-dominant NE?

predict a1

NoYes

NoYes

motivates:

Pareto-Dominant NE (PDNE): predict uniformly at random
from actions consistent with PDNE, otherwise predict at random.



Example of Pareto-Dominant Nash Equilibrium

(a2, a2) is a Pareto-Dominant Nash equilibrium.

a1 a2 a3
a1 10, 10 0, 0 0, 0
a2 0, 0 30, 30 0, 0
a3 0, 0 0, 0 5, 5



Performance of PDNE

Accuracy

Guess at random 0.33
Level 1 0.36

(0.01)
Level 1(α) 0.41

(0.05)

PDNE 0.65
(0.02)

Decision Tree Ensemble 0.73
(0.02)

PDNE performs very well on this data set (substantially
outperforms Level 1(α))
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Part IV:

Use Synthetic Data to Evaluate

the Restrictiveness of Models

How Flexible is that Functional Form? Quantifying the
Restrictiveness of Theories, conditionally accepted at REStat, 2023

(Fudenberg, Gao, and Liang)



The Basic Problem

When a model is very complete, we’d like to interpret this as
evidence that the model is a good one.

But another possibility is that the model is simply so flexible it
would have fit any data.

At an extreme: the model may not be falsifiable.

We’d like to distinguish between when a model is precisely
tailored to capture real regularities versus when it is simply

unrestrictive.
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There is a single (binary) covariate x ∈ {x0, x1} and outcome
variable y ∈ [0, 1]
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Data is an observed outcome for each covariate value (a point
in [0, 1]× [0, 1])

Model A is consistent with all possible data (unrestrictive)

Model B imposes the restriction that f (x1) > f (x0), will
imperfectly fit some data sets
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Selten’s Measure
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One way of evaluating the restrictiveness of these models is the
fraction of data that they can fit exactly (Selten, 1991).

Model A can exactly fit all possible data

Model B can only fit 1/2 of it



How to Measure Restrictiveness?
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Two drawbacks:

Easy to determine in this example, but can be difficult to
determine in general without analytical results.

Obscures important differences between models such as
between Models B and C
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knowledge about structure of data (e.g., y ∈ [0, 1])

(2) Uniformly sample over all possible data satisfying the
background constraints (synthetic data)
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(4) Repeat (3) for some constant benchmark model
(normalization), e.g., the model {(1/2, 1/2)}
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Our Measure of Restrictiveness

(3) Evaluate the average distance between the model and the
realized data (approximation error)

(4) Repeat (3) for some constant benchmark model
(normalization), e.g., the model {(1/2, 1/2)}

The restrictiveness of the model is the ratio of (3) to (4).

ranges from zero (completely unrestrictive) to 1 (as restrictive
as the benchmark)



Restrictiveness and Completeness

Restrictiveness:

Ranges from zero to 1

Computed from synthetic data

Larger values mean that the model imposes more restrictions.

Completeness:

Ranges from zero to 1

Computed from real data

Larger values implies a model that predicts real data better.

Prefer models that have high completeness (good fit to real
data) and high restrictiveness (poor fit to synthetic data).



Economic Application

Prediction problem:

x = (z , p; z , 1− p) is a binary lottery

y is a subject’s certainty equivalent for that lottery

subject is indifferent between receiving y dollars for sure versus
the random outcome of the lottery

evaluate mean-squared error (ŷ − y)2 given prediction ŷ

The real data:

25 binary lotteries (z , p; z , 1− p) from Bruhin et. al (2010)

179 reported certainty equivalents per lottery
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Two Economic Models

The predicted utility for lottery (z , p; z , 1− p) is

w(p)× zα + (1− w(p))× zα

where w(p) is a probability weighting function satisfying either:

w(p) = δpγ

δpγ+(1−p)γ (Cumulative Prospect Theory), or

w(p) = p
1+(1−p)η (Disappointment Aversion)
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DA(α, η) is more restrictive than CPT(α, δ, γ), but substantially less
predictive of the real data.
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Completeness-Restrictiveness Pareto Frontier
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Part V:

Transfer Performance

The Transfer Performance of Economic Models, 2023
(Andrews, Fudenberg, Lei, Liang, and Wu)



Generalizability

Previous analyses have all been “within domain”

train and test on data drawn from the same economic context

But economic models are meant to capture structure that is
shared across contexts

When a model is complete on data from a given context, will
it also perform well on data from another?



Out of Sample Testing

So far have considered the standard “out of sample” test for a
model:

Performance on test data informative about performance on new
unseen sample of observations drawn from the same
distribution.
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But sometimes what we’re interested in instead is how well the
estimated model will perform on data from a different distribution:

Can we use “out of domain” testing to learn about the estimated
model’s performance on a sample from a new domain?
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Underlying Statistical Model

Suppose each sample Si consists of observations (x , y) drawn
iid from some distribution Pi

The distributions Pi vary across contexts but are themselves
drawn iid from some underlying distribution

The quantity that we’re interested in is the transfer error for a
model estimated on one sample and tested on another



Analyst’s Metadata

The analyst has access to metadata M = (S1, . . . ,Sn) consisting of
n samples independently generated in this way.
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Main Result

For any τ ∈ (0, 1),

[e1−τ , eτ ]

is a level-
(

2τ
(
n−1
n+1

)
− 1
)

two-sided confidence interval for the

transfer error of the model on a new sample



Example Application of Results

Prediction problem:

x = (z , p; z , 1− p) is a binary lottery

y is a subject’s certainty equivalent for that lottery

evaluate mean-squared error (ŷ − y)2 given prediction ŷ

Meta-data:

44 samples of reported certainty equivalents across different
subject pools (from 14 papers)

on average, 2752 observations per domain

Apply the previous result to compare generalizability of two
economic models (EU and CPT) and two black box methods
(random forest and kernel regression)
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Comparing the Generalizability of Economic Models and
Black Box Algorithms

The economic models generalize substantially better!

even though the black box algorithms perform slightly better
on within domain tests



Summary of Methodologies

black box algorithm can help to identify the degree of
irreducible noise in the problem

black box algorithm can help the modeler to identify new
(interpretable) structure to add back to the model

black box algorithms can help the modeler to “algorithmically
generate” new test cases to break the model

computationally simulate synthetic data to evaluate the
restrictiveness of economic models

compare the transfer performance of economic models and
black box methods
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