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prediction problems 

there is an observable feature vector  

there is an outcome  of interest 

x ∈ X

y ∈ Y

many of you are familiar with prediction problems in machine learning

the goal is to predict the unknown  given the observed y x



classic ML problems 

figure: predict the digits these images represent



classic ML problems 

figure: is there a cat in this image?



algorithms and people 

 is a description of a person 

 is an unobservable property of that person

x

y

these algorithms are now being used to make predictions about people



algorithms and people 

 is a description of a person 

 is an unobservable property of that person

x

y

these algorithms are now being used to make predictions about people

predict whether a web user will click on a particular ad 

predict whether a web user will purchase a particular good (and 
hence, whether to show them that ad)

original use cases revolved around digital marketing and product targeting:

in recent years, the scope of big data prediction problems has dramatically 
expanded



example 1: medical diagnosis 

use cases:
making medical diagnoses 
predicting which patients would benefit most from 
treatment



use cases:
guiding judge decisions 
regarding whether to 
release a defendant on bail 
predicting places where 
crime is likely to occur

example 2: predicting who will be involved in crime 



use cases:
setting credit limits 
guiding decisions about who should receive credit

example 3: predicting creditworthiness



what is different about these “social” prediction problems? 

the criterion that we use to evaluate algorithms extend beyond accuracy

it might not matter if an ML algorithm for digit recognition is twice 
as accurate for the digit 7 than for the digit 8 

but what if an ML algorithm is twice as accurate for assessing 
probability of committing a crime for one racial group than another?

enormous recent interest in the “fairness” of ML algorithms, defined as 
how the consequences of the ML algorithms vary across social groups



example 1: medical diagnosis 

real use cases:



example 2: predicting who will be involved in crime 



example 3: predicting creditworthiness



the response 

algorithm designers increasingly optimize not only for accuracy but also 
“fairness” (maintain comparable error rates across groups)  

unfairness  ≤ ε

max accuracy 

subject to 



the response 

algorithm designers increasingly optimize not only for accuracy but also 
“fairness” (maintain comparable error rates across groups)  

max accuracy 

subject to disparity in errors across groups  ≤ ε



plan for the talk 

three papers on this topic:

1. algorithm design: a fairness-accuracy frontier (liang, lu, mu, 
and okumura) 

2. testing the fairness-accuracy improvability of algorithms 
(auerbach, liang, tabord-meehan, okumura) 

3. algorithmic fairness and social welfare (liang and lu)



Algorithm Design: 
A Fairness-Accuracy Frontier 

Annie Liang Jay Lu 
(Northwestern) 

Xiaosheng Mu 
(UCLA) (Princeton) 

Kyohei Okumura 
(Northwestern) 



introduction 

ideally the algorithm would be perfectly accurate and “fair” across groups, 
in practice there can be a conflict between these goals

this paper: general framework for formalizing this 
tradeoff, and identification of simple properties of the 

algorithm’s inputs that determine its shape





no information 

treat everyone 

equal error rates (3/7)



have access to covariate x1



have access to covariate x1

DON’T TREATTREAT



have access to covariate x1

DON’T TREATTREAT

red error drops to 0 

blue error rises to 4/7



have access to covariate x1

DON’T TREATTREAT
equalize error rates at 2/7



there is a fairness-accuracy tradeof

DON’T TREATTREAT



have access to both covariates



have access to both covariates

TREAT

DON’T TREAT

both error rates drop to zero



adding  improves both 
accuracy and fairness

x2

TREAT

DON’T TREAT



model 



setup 

each subject is described by three variables: 

type  taking values in  
(e.g., need for medical procedure) 

group  
(e.g., race) 

covariate vector  taking values in  
(e.g., image scans, number of past hospital visits, blood tests) 

 

Y 𝒴

G ∈ 𝒢 = {r, b}

X 𝒳
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setup 

each subject is described by three variables: 

type  taking values in  
(e.g., need for medical procedure) 

group  
(e.g., race) 

covariate vector  taking values in  
(e.g., image scans, number of past hospital visits, blood tests) 

in the population,  (with no restrictions on )  

an algorithm is a map  from covariate vectors into a decision 
 

a policymaker chooses from a set of of algorithms  (e.g., linear rules) and 
their randomizations — for most of the talk, let  be unconstrained 

Y 𝒴

G ∈ 𝒢 = {r, b}

X 𝒳

(X, Y, G) ∼ P P

a : 𝒳 → {0,1}
d ∈ {0,1}

𝒜
𝒜



how algorithms are evaluated 

primitive loss function  expresses the “inaccuracy” of decision  
for an individual with type  

e.g.,  if  is a prediction of  
e.g., a convex combination of Type I and Type II errors 
 

ℓ(y, d) d
y

ℓ(y, d) = 1(y ≠ d) d y
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how algorithms are evaluated 

primitive loss function  expresses the “inaccuracy” of decision  
for an individual with type  

e.g.,  if  is a prediction of  
e.g., a convex combination of Type I and Type II errors 
 

ℓ(y, d) d
y

ℓ(y, d) = 1(y ≠ d) d y

definition: the group error  is the 
average loss for members of group  under algorithm  

for the first loss function,  is the fraction of incorrect 
predictions (“misclassification rate”) for group  members 
 

eg(a) ≡ 𝔼[ℓ(Y, a(X)) ∣ G = g]
g a

eg(a)
g

the policymaker evaluates algorithm  based on the induced group 
errors  

improving accuracy: lowering  and  
improving fairness: lowering 

a
(er(a), eb(a)) ∈ ℝ2

er eb
|er − eb |



example preferences 

utilitarian: minimize  where  and  are the proportions of 
either group (or generalized utilitarian: minimize ) 

egalitarian: minimize  (break ties using utilitarian rule) 

rawlsian: minimize  (break ties using utilitarian rule) 

constrained optimization: (e.g., Hardt et al, 2016)

prer + pbeb pr pb
αrrer + αbeb

er − eb

max {er, eb}

min
a:𝒳→Δ(𝒟)

prer(a) + pbeb(a)  s.t.  |er(a) − eb(a) | ≤ ε



broad class of fairness-accuracy preferences 

a fairness-accuracy preference is any preference over group error pairs  
consistent with the following partial order:

(er, eb)

  (in words:  FA-dominates ) if  
  

 

(er, eb) >FA (e′￼r, e′￼b) (er, eb) (e′￼r, e′￼b)definition:

er ≤ e′￼r, eb ≤ e′￼b,

higher accuracy

and |er − eb | ≤ |e′￼r − e′￼b |

higher fairness

with at least one of these inequalities strict

includes all of the previous example preferences



feasible set 

(er(a), eb(a))

group r error er

gr
ou

p 
b 

er
ro

r 
e b

group errors induced by 
algorithm a



feasible set 

the feasible set given  (denoted ) consists of all pairs 
 that can be implemented using some algorithm in 

X ℰX
(er, eb) Δ(𝒜)

feasible set

group r error er

gr
ou

p 
b 

er
ro

r 
e b ℰX



the fairness-accuracy frontier given  (denoted ) consists of all 
feasible  that are undominated in the -order 

 

(i.e., not possible to improve both accuracy and fairness)

X ℱX
(er, eb) >FA

group r error er

gr
ou

p 
b 

er
ro

r 
e b

fairness-accuracy frontier 

feasible set
ℰX



group r error er

gr
ou

p 
b 

er
ro

r 
e b

fairness-accuracy frontier 

can also interpret as the 
optimal points across different 
fairness-accuracy preferences

the fairness-accuracy frontier given  (denoted ) consists of all 
feasible  that are undominated in the -order 

 

(i.e., not possible to improve both accuracy and fairness)

X ℱX
(er, eb) >FA

feasible set
ℰX



characterization 
of the fairness-accuracy 

frontier 



feasible set
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feasible point that 
maximizes fairness

FX

important points 
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feasible set

group r error er

gr
ou

p 
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er
ro

r 
e b

RX
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feasible point that 

minimizes group b’s error

important points 



feasible set

group r error er

gr
ou

p 
b 

er
ro

r 
e b

RX

BX

observe:  

group b’s error is higher than 
group r’s even at group b’s 

favorite point, BX

important points 



feasible 
set

BX

RX

group r error er

feasible 
set

BX

RX

group balance and group skew 

 is group-skewedX

 is group-balancedX



feasible set

group r error er

gr
ou

p 
b 

er
ro

r 
e b

RX

BX

pareto frontier 

say that  pareto-dominates 
 if both group errors are smaller 

and one is at least strictly smaller

(er, eb)
(e′￼r, e′￼b)



feasible set

group r error er

gr
ou

p 
b 

er
ro

r 
e b

RX

BX

pareto frontier 
usual pareto frontier: 

all feasible points which are not 
pareto-dominated

say that  pareto-dominates 
 if both group errors are smaller 

and one is at least strictly smaller

(er, eb)
(e′￼r, e′￼b)



feasible 
set

BX

RX

group r error er

feasible 
set

BX

RX

 is group-skewedX

 is group-balancedX

characterization of the frontier 

the fairness-accuracy 
frontier is precisely the 
usual pareto frontier

the fairness-accuracy 
frontier is strictly larger 
than the pareto frontier 

(includes pareto-dominated 
points)



feasible 
set
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group r error er

feasible 
set

BX

RX

 is group-skewedX

 is group-balancedX

characterization of the frontier 

the fairness-accuracy 
frontier is precisely the 
usual pareto frontier

the fairness-accuracy 
frontier is strictly larger 
than the pareto frontier 

(includes pareto-dominated 
points)

fairness considerations cannot justify the 
implementation of pareto-dominated outcomes
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usual pareto frontier

the fairness-accuracy 
frontier is strictly larger 
than the pareto frontier 

(includes pareto-dominated 
points)

characterization of the frontier 

FX



feasible 
set

BX

RX

group r error er

feasible 
set

BX

RX

 is group-skewedX

 is group-balancedX
the fairness-accuracy 

frontier is precisely the 
usual pareto frontier

the fairness-accuracy 
frontier is strictly larger 
than the pareto frontier 

(includes pareto-dominated 
points)

pareto-dominated outcomes may be optimal for the 
policymaker given sufficient weight on fairness concerns

characterization of the frontier 

(in practice, may look like choosing to ignore predictive information)

FX



feasible 
set

BX

RX

group r error er

feasible 
set

BX

RX

 is group-skewedX

 is group-balancedX
the fairness-accuracy 

frontier is precisely the 
usual pareto frontier

the fairness-accuracy 
frontier is strictly larger 
than the pareto frontier 

(includes pareto-dominated 
points)

characterization of the frontier 

theorem:

FX



special case where  is a covariate G

feasible 
setRX = BX

when  is a covariate, the feasible set and fairness-
accuracy frontier simplify further

G

FX



more special cases 

RX = BX
feasible 

set

RX = BX = FX

feasible 
set

“once you know , there is no additional 
predictive value to knowing ”

X
G

conditional independence:

“the joint distribution of  is the 
same for both groups”

(X, Y )

strong independence:

FX



interpreting group balance and group skew

why might  be group-balanced?X

 has a group-dependent meanings  
high  implies high  for group , but low  for group  

different inputs in  are informative for either group 
 where  is uninformative about  for group  and  

is uninformative about  for group 

X
X Y r Y b

X
X = (X1, X2) X1 Y r X2

Y b



interpreting group balance and group skew

why might  be group-balanced?X

 has a group-dependent meanings  
high  implies high  for group , but low  for group  

different inputs in  are informative for either group 
 where  is uninformative about  for group  and  

is uninformative about  for group 

X
X Y r Y b

X
X = (X1, X2) X1 Y r X2

Y b

why might X be group-skewed?

 is asymmetrically informative 
 more dispersed than  

e.g., medical data is recorded more accurately for high-income patients 
than low-income patients 

X
Y ∣ X, G = r Y ∣ X, G = b



two additional characterizations

a small set of preferences (which linearly trade off fairness and 
accuracy) is sufficient for recovering the full fairness-accuracy frontier 

 

a class of “threshold” algorithms implements the fairness-accuracy 
frontier

see paper for two additional characterizations of the fairness-accuracy frontier



model 2: 
input design 



model 1: algorithm design 

(x1, …, xn) ∈ 𝒳
covariate vector

a : 𝒳 → Δ({0,1})
a policymaker chooses an algorithm

d ∈ {0,1}
decision



model 2: input design 

(x1, …, xn) ∈ 𝒳
covariate vector

( ̂x1, …, ̂xm) ∈ ̂𝒳

a : ̂𝒳 → Δ ({0,1})
an agent chooses an algorithm

d ∈ {0,1}
decision

a policymaker 
garbles the original 

covariate vector

garbled covariate vector



model 2: input design 

LSAT score

e.g., in 1997, Berkeley law school 
administrators reported to their 

admissions committee only a coarsened 
LSAT score (Chan and Eyster, 2003)

d ∈ {0,1}
decision

law school 
administrators

coarsened 
LSAT score

law school admissions 
committee



(x1, …, xn)
original covariate vector

a policymaker 
chooses a garbling

( ̂x1, …, ̂xm)

garbled covariate vector

garblings 

a garbling of  is any stochastic map X

T : 𝒳 → Δ( ̂𝒳 )
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garbled covariate vector

garblings 

a garbling of  is any stochastic map X
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(x1, …, xn)
original covariate vector

a policymaker 
chooses a garbling

( ̂x1, …, ̂xm)

garbled covariate vector

garblings 

a garbling of  is any stochastic map X

T : 𝒳 → Δ( ̂𝒳 )

new space of 
covariate vectors



(x1, x2, x3)

a policymaker 
chooses a garbling

garblings 

examples

ban a specific covariate (e.g., a group 
identity or test score)

(x1, x2)



x ∈ {1,2,3,4}

a policymaker 
chooses a garbling

garblings 

examples

̂x = { L  if x ∈ {1,2}
H  if x ∈ {3,4}

ban a specific covariate (e.g., a group 
identity or test score) 

coarsen a covariate



(x1, x2)

a policymaker 
chooses a garbling

garblings 

examples

ban a specific covariate (e.g., a group 
identity or test score) 

coarsen a covariate 

add noise to a covariate

(x1 + ε, x2)
ε ∼ 𝒩(0,1)



preferences 

(x1, …, xn) ∈ 𝒳

d ∈ {0,1}
decision 

(e.g., whether 
to treat)

covariate vector

a policymaker 
chooses a garbling

( ̂x1, …, ̂xm) ∈ ̂𝒳
garbled covariate vector

an agent chooses an 
algorithm

utilitarian

can have any 
fairness-accuracy 

preference



input design 

(x1, …, xn) ∈ 𝒳

d ∈ {0,1}
decision 

(e.g., whether 
to treat)

covariate vector

a policymaker 
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( ̂x1, …, ̂xm) ∈ ̂𝒳
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preference

INPUT DESIGN



model 1: algorithm design 

(x1, …, xn) ∈ 𝒳
covariate vector

a : 𝒳 → Δ({0,1})
a policymaker chooses an algorithm

d ∈ {0,1}
decision



input design 

definition: the input design feasible set given  isX

ℰ*X = {e(aT) ∣ T is a garbling of X}

for any garbling , let  denote the algorithm that a 
utilitarian agent optimally chooses given this garbling

T aT : ̂X → {0,1}

definition: the input design fairness-accuracy frontier given  (denoted 
) is the set of -undominated points in 

X
ℱ*X >FA ℰ*X



feasible set
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how input design can help 

suppose this is the 
designer’s favorite point
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how input design can help 

but these are the utilitarian 
indifference curves



feasible set
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how input design can help send  ungarbledX

agent can implement any 
point in the feasible set ℰX
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group r error er

gr
ou

p 
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r 
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how input design can help 

goal: choose a garbling of  that 
yields a feasible set like this

X
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how input design can help 
when do garbling exist 

such that this 
construction is possible?



group r error er

gr
ou

p 
b 

er
ro

r 
e b

how input design can help 
when do garbling exist 

such that this 
construction is possible?best error pair given 

no information

not always

cannot force the agent to 
implement an error pair in 

this halfspace



group r error er

gr
ou

p 
b 

er
ro

r 
e b

how input design can help 
when do garbling exist 

such that this 
construction is possible?

call this 
halfspace H

lemma: 
 ℰ*X = ℰX ∩ H

(see also Alonso and 
Camara, 2016)



how powerful is input design? 

(a) if  is group-balanced, thenX

ℱX = ℱ*X ⟺ RX, BX ∈ H

proposition: 

(b) if  is -skewed, thenX r

ℱX = ℱ*X ⟺ RX, FX ∈ H

feasible 
set

BX

RX

group r error er

feasible 
set

BX

RX

H

H



could banning a covariate ever be strictly optimal? 

when the policymaker has control of the algorithm (model 1), it is never 
strictly optimal to ban a covariate 

Blackwell (1951)

because of misaligned preferences between the policymaker and agent, 
banning a covariate can be strictly optimal in our framework  



simple example where banning a covariate is optimal 

 with  for both groups  

 is a binary covariate 
 with probability 1 if  
 with probability 0.6 if  

the policymaker is Egalitarian (payoff is )

Y ∈ {0,1} P(Y = 1 ∣ G = g) = 1/2 g

X ∈ {0,1}
X = Y G = r
X = Y G = b

− |er − eb |
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simple example where banning a covariate is optimal 

 with  for both groups  

 is a binary covariate 
 with probability 1 if  
 with probability 0.6 if  

the policymaker is Egalitarian (payoff is )

Y ∈ {0,1} P(Y = 1 ∣ G = g) = 1/2 g

X ∈ {0,1}
X = Y G = r
X = Y G = b

− |er − eb |

intuition:  

the utilitarian agent will use 
all permitted information to 

make more accurate decisions, 
but accuracy increases faster 

for group  than group r b

the policymaker’s payoff is strictly negative
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could banning a covariate ever be strictly optimal? 

when the policymaker has control of the algorithm (model 1), it is never 
strictly optimal to ban a covariate 

Blackwell (1951)

because of misaligned preferences between the policymaker and agent, 
banning a covariate can be strictly optimal in our framework  

(result) …but this only possible when group identity is not available 

definition: write  if every  is FA-dominated by 
some 

ℱX,X′￼>FA ℱX e ∈ ℱX
e ∈ ℱX,X′￼

every designer with a FA preference is made strictly better off by 
garbling  rather than by garbling  alone(X, X′￼) X



preferences 

(x1, …, xn−1, xn)

d ∈ {0,1}
decision

a policymaker 
chooses a garbling

a utilitarian agent 
chooses an algorithm

original covariate vector

test score

GPA, essays, etc.

?
could be optimal to drop  entirely 
(for some policymaker preference) 

xn



preferences 

(x1, …, xn−1, xn, g)

d ∈ {0,1}
decision

a policymaker 
chooses a garbling

a utilitarian agent 
chooses an algorithm

original covariate vector

test score

GPA, essays, etc.

group identity

?
never optimal to drop  entirely 
(for any policymaker preference) 

xn



could banning a covariate ever be strictly optimal? 

result:  for all “minimally informative”  

i.e., every policymaker (with any fairness-accuracy preference) is made strictly 
worse off by banning any (minimally informative) covariate when group 
identity  is available 

ℱX,X′￼,G >FA ℱX,G X′￼

g



could banning a covariate ever be strictly optimal? 

result:  for all “minimally informative”  

i.e., every policymaker (with any fairness-accuracy preference) is made strictly 
worse off by banning any (minimally informative) covariate when group 
identity  is available 

ℱX,X′￼,G >FA ℱX,G X′￼

g

intuition: when  is available, can choose a group-dependent garbling of the 
covariate, e.g., add noise if  but not if 

g
g = r g = b



back to the example 

 with  for both groups  

 is a binary covariate 
 with probability 1 if  
 with probability 0.6 if  

the policymaker is Egalitarian (payoff is )

Y ∈ {0,1} P(Y = 1 ∣ G = g) = 1/2 g

X ∈ {0,1}
X = Y G = r
X = Y G = b

− |er − eb |

the policymaker’s payoff is zero the policymaker’s payoff is strictly negative



back to the example 

 with  for both groups  

 is a binary covariate 
 with probability 1 if  
 with probability 0.6 if  

the policymaker is Egalitarian (payoff is )

Y ∈ {0,1} P(Y = 1 ∣ G = g) = 1/2 g

X ∈ {0,1}
X = Y G = r
X = Y G = b

− |er − eb |

now suppose the 
policymaker additionally 

has access to  

so the full covariate vector 
is 

G

(X, G)



back to the example 

 with  for both groups  

 is a binary covariate 
 with probability 1 if  
 with probability 0.6 if  

the policymaker is Egalitarian (payoff is )

Y ∈ {0,1} P(Y = 1 ∣ G = g) = 1/2 g

X ∈ {0,1}
X = Y G = r
X = Y G = b

− |er − eb |



comment on test scores 

considering test scores, our result says that…

if  is available, then excluding test scores is welfare-reducing for all 
policymakers with the ability to garble available covariates 

if  is not available, then it may be better for a sufficiently fairness-
minded policymaker to completely exclude test scores 

g

g

banning affirmative action may lead universities with certain preferences to  
ban use of test scores 



empirical 
application 



taking the framework to data 

have so far focused on general conceptual findings that hold across 
settings 

our framework can also be used to better understand the fairness-
accuracy tradeoffs in specific datasets 

illustrate this on a healthcare dataset (see paper for second 
illustration)



healthcare application

the data is from Obermeyer et al. (2019)

48,784 patient observations 
the covariate vector  includes 139 demographic + medical covariates 
group identities: Black or White, denoted  
true health needs are measured in the data as each patient's total 
number of active chronic illnesses in the subsequent year

X
G ∈ {b, w}



48,784 patient observations 
the covariate vector  includes 139 demographic + medical covariates 
group identities: Black or White, denoted  
true health needs are measured in the data as each patient's total 
number of active chronic illnesses in the subsequent year

X
G ∈ {b, w}

the prediction problem:

the hospital used these covariates to identify 3% of patients to 
automatically enroll in an intensive healthcare program 
 = indicator for whether the patient’s health needs are in the top 3% 

consider algorithms  and loss function  
algorithms are more accurate if they have a lower misclassification 
rate for each group 
more fair if the disparity between the misclassification rates for the 
two groups is smaller

Y
a : 𝒳 → {0,1} ℓ(d, y) = 1(d ≠ y)

healthcare application

the data is from Obermeyer et al. (2019)



group-balance versus group-skew 
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or

Black error

how we estimate these group 
optimal points:

split the sample into “training” 
and “test” 
use the training sample to 
identify the algorithm that 
minimizes group ’s error 
assess error of this algorithm on 
the test sample for each group

g



group-balance versus group-skew 
W

hi
te

 e
rr

or

Black error

group-skewed: 

Black error is higher even at the Black-optimal point

(statistically significant, see paper for details)

how we estimate these group 
optimal points:

split the sample into “training” 
and “test” 
use the training sample to 
identify the algorithm that 
minimizes group ’s error 
assess error of this algorithm on 
the test sample for each group

g



group-balance versus group-skew 
W

hi
te

 e
rr

or

Black error

group-skewed: 

Black error is higher even at the Black-optimal point

(statistically significant, see paper for details)

how we estimate these group 
optimal points:

split the sample into “training” 
and “test” 
train a random forest algorithm 
to minimize group ’s error on 
the training sample 
assess error of this algorithm on 
the test sample for each group

g



group-balance versus group-skew 
W

hi
te

 e
rr

or

Black error

group-skewed: 

Black error is higher even at the Black-optimal point

(statistically significant, see paper for details)

how we estimate these group 
optimal points:

split the sample into “training” 
and “test” 
train a linear classifier to 
minimize group ’s error on the 
training sample 
assess error of this algorithm on 
the test sample for each group

g



fairness-accuracy frontier 

(depicted for the set of linear classifiers)

 lin
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fairness-accuracy frontier 

strong fairness-accuracy conflict: 
 
main tradeoff is whether the designer is 
willing to increase errors for both groups to 
improve fairness 

(depicted for the set of linear classifiers)

 lin
e

45
∘



fairness-accuracy frontier 

strong fairness-accuracy conflict: 
 
main tradeoff is whether the designer is 
willing to increase errors for both groups to 
improve fairness 

qualitatively resembles Conditional 
Independence case ( ) 

consistent with a setting in which: 
the optimal algorithm is the same for 
both groups 
measured covariates are more predictive 
for White patients than Black patients

G ⊥ Y ∣ X

(depicted for the set of linear classifiers)

 lin
e

45
∘



input design is with loss 

“no information” 
indifference curve for 
a utilitarian agent



input design is with loss 



input design is with loss 



input design is with loss 

not all designers with FA preferences can implement their 
favorite outcome using input design



 lin
e

45
∘

adding group identity as a covariate 

there are currently active debates regarding whether to include 
race as a group variable in healthcare prediction algorithms  



adding group identity as a covariate 

here’s how the FA frontier changes when a 
separate algorithm is permitted for each group

 lin
e

45
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adding group identity as a covariate 

adding group identity has little effect on 
the utilitarian-optimal point

 lin
e

45
∘



adding group identity as a covariate 

the largest effect is on the fairness-
optimal point

 lin
e

45
∘



conclusion 

we formalize a fairness-accuracy frontier for the evaluation 
of algorithms

e.g., when inputs are group-balanced, Pareto-dominated outcomes are 
not optimal even with strong fairness preferences 

when it is possible to choose group-dependent garblings of covariates, 
then banning covariates is never optimal

demonstrate that qualitative conclusions can be made which hold 
uniformly over a large class of designer preferences

the framework is useful not just conceptually, but also to the empirical 
evaluation of algorithms that are used in practice 
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introduction 

disparate impact has been empirically documented in a range of 
applications 

but the organizations that deploy these algorithms also value other 
objectives such as accuracy and profit 

when an algorithm has a disparate impact, is it possible to reduce that 
disparity without compromising the organization's other objectives? 

the answer to this question is legally relevant: 
 
disparate impact that would otherwise be prohibited under US federal 
law is often permissible if necessary to achieve a business interest



FIRM
(employs an algorithm, e.g., 
to make hiring decisions)

PART 1: 

ESTABLISHING 
DISPARATE IMPACT

CHALLENGER

this algorithm has 
disproportionate 
harms for blue 

people

(e.g., a commission or 
private individual)



FIRM
(employs an algorithm, e.g., 
to make hiring decisions)

PART 2: 

ESTABLISHING 
BUSINESS NECESSITY

this algorithm is a 
business necessity, i.e., 

it is necessary to 
achieve a legitimate 
nondiscriminatory 

interest

CHALLENGER
(e.g., a commission or 

private individual)



FIRM
(employs an algorithm, e.g., 
to make hiring decisions)

PART 3: 

IS THERE A VALID 
LESS-DISCRIMINATORY 

ALTERNATIVE?

this alternative 
algorithm would 

achieve those same 
business objectives, 

and has less disparate 
impact

CHALLENGER
(e.g., a commission or 

private individual)



FIRM
(employs an algorithm, e.g., 
to make hiring decisions)

PART 3: 

IS THERE A VALID 
LESS-DISCRIMINATORY 

ALTERNATIVE?

this alternative 
algorithm would 

achieve those same 
business objectives, 

and has less disparate 
impact

CHALLENGER
(e.g., a commission or 

private individual)

WINS



PART 1: 

ESTABLISHING 
DISPARATE IMPACT

there exist established 
statistical procedures for 

this part



PART 3: 

IS THERE A VALID 
LESS-DISCRIMINATORY 

ALTERNATIVE?

PART 1: 

ESTABLISHING 
DISPARATE IMPACT

PART 2: 

ESTABLISHING 
BUSINESS NECESSITY

there exist established 
statistical procedures for 

this part

our paper focuses on 
developing a statistical 
framework and tests for 

evaluating these latter parts



setup 

each subject is described by three variables: 

type  taking values in  

group  

covariate vector  taking values in  

an algorithm is a map  from covariate vectors into a 
decision in  

there is a primitive set of permissible algorithms  

in the population,  (with no restrictions on )  

analyst does not know , but observes a sample  
consisting of  i.i.d. observations from  
 

Y 𝒴

G ∈ 𝒢 = {r, b}

X 𝒳

a : 𝒳 → 𝒟
𝒟

𝒜

(X, Y, G) ∼ P P

P {(Xi, Yi, Gi)}
n P



accuracy and fairness 

there is an accuracy utility function  and a 
(possibly identical) fairness utility function  

uA : 𝒳 × 𝒴 × 𝒟 → ℝ
uF : 𝒳 × 𝒴 × 𝒟 → ℝ



accuracy and fairness 

there is an accuracy utility function  and a 
(possibly identical) fairness utility function  

uA : 𝒳 × 𝒴 × 𝒟 → ℝ
uF : 𝒳 × 𝒴 × 𝒟 → ℝ

stand-in for any business objective 
unrelated to fairness across groups



accuracy and fairness 

there is an accuracy utility function  and a 
(possibly identical) fairness utility function  

we consider accuracy and fairness criteria that can be formulated as 

 
 

 

uA : 𝒳 × 𝒴 × 𝒟 → ℝ
uF : 𝒳 × 𝒴 × 𝒟 → ℝ

Ug
A(a) = EP[uA(X, Y, a(X)) ∣ G = g]

Ug
F(a) = EP[uF(X, Y, a(X)) ∣ G = g]

expected utility for either group using the 
respective utility function



accuracy and fairness 

there is an accuracy utility function  and a 
(possibly identical) fairness utility function  

we consider accuracy and fairness criteria that can be formulated as 

 
 

 

uA : 𝒳 × 𝒴 × 𝒟 → ℝ
uF : 𝒳 × 𝒴 × 𝒟 → ℝ

Ug
A(a) = EP[uA(X, Y, a(X)) ∣ G = g]

Ug
F(a) = EP[uF(X, Y, a(X)) ∣ G = g]

definition: algorithm  is more accurate than algorithm  if  

and more fair than algorithm  if 

a1 a0

a0

 and Ur
A(a1) > Ur

A(a0) Ub
A(a1) > Ub

A(a0)

|Ur
F(a1) − Ub

F(a1) | < |Ur
F(a0) − Ub

F(a0) |



accuracy- and fairness- improvability 

definition: fix any . the algorithm  constitutes a 
-improvement on the algorithm  if 

 , and 

Δr, Δb, Δf ∈ ℝ+ a1 (Δr, Δb, Δf )
a0

Ur
A(a1)

Ur
A(a0)

> 1 + Δr,
Ub

A(a1)
Ub

A(a0)
> 1 + Δb

|Ur
F(a1) − Ub

F(a1) |
|Ur

F(a0) − Ub
F(a0) |

< 1 − Δf

-percent increase in 
accuracy for group 

Δr
r

-percent reduction in 
disparate impact

Δf
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accuracy- and fairness- improvability 
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accuracy- and fairness- improvability 

definition: fix any . the algorithm  constitutes a 
-improvement on the algorithm  if 

 , and 

Δr, Δb, Δf ∈ ℝ+ a1 (Δr, Δb, Δf )
a0

Ur
A(a1)

Ur
A(a0)

> 1 + Δr,
Ub

A(a1)
Ub

A(a0)
> 1 + Δb

|Ur
F(a1) − Ub

F(a1) |
|Ur

F(a0) − Ub
F(a0) |

< 1 − Δf

definition: algorithm  is FA-dominated within class  if there exists an 
algorithm  that -improves on 

a0 𝒜
a1 ∈ 𝒜 (0,0,0) a0

can strictly reduce disparate impact without compromising on accuracy 
for either group



accuracy- and fairness- improvability 

definition: fix any . the algorithm  constitutes a 
-improvement on the algorithm  if 

 , and 

Δr, Δb, Δf ∈ ℝ+ a1 (Δr, Δb, Δf )
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a1 ∈ 𝒜 (0,0,0) a0
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for either group



accuracy- and fairness- improvability 

definition: fix any . the algorithm  constitutes a 
-improvement on the algorithm  if 

 , and 

Δr, Δb, Δf ∈ ℝ+ a1 (Δr, Δb, Δf )
a0

Ur
A(a1)

Ur
A(a0)

> 1 + Δr,
Ub

A(a1)
Ub

A(a0)
> 1 + Δb

|Ur
F(a1) − Ub

F(a1) |
|Ur

F(a0) − Ub
F(a0) |

< 1 − Δf

definition: algorithm  is FA-dominated within class  if there exists an 
algorithm  that -improves on 

a0 𝒜
a1 ∈ 𝒜 (0,0,0) a0

can strictly reduce disparate impact without compromising on accuracy 
for either group

directly related to the business-necessity defense in a disparate impact case



accuracy- and fairness- improvability 

definition: fix any . the algorithm  constitutes a 
-improvement on the algorithm  if 

 , and 

Δr, Δb, Δf ∈ ℝ+ a1 (Δr, Δb, Δf )
a0

Ur
A(a1)

Ur
A(a0)

> 1 + Δr,
Ub

A(a1)
Ub

A(a0)
> 1 + Δb

|Ur
F(a1) − Ub

F(a1) |
|Ur

F(a0) − Ub
F(a0) |

< 1 − Δf−δ

definition: algorithm  is -fairness improvable within class  if there 
exists an algorithm  that -improves on 

a0 δ 𝒜
a1 ∈ 𝒜 (0,0,δ) a0

can reduce disparate impact by  percent without compromising on 
accuracy for either group

δ



accuracy- and fairness- improvability 

definition: fix any . the algorithm  constitutes a 
-improvement on the algorithm  if 

 , and 

Δr, Δb, Δf ∈ ℝ+ a1 (Δr, Δb, Δf )
a0

Ur
A(a1)

Ur
A(a0)

> 1 + Δr,
Ub

A(a1)
Ub

A(a0)
> 1 + Δb

|Ur
F(a1) − Ub

F(a1) |
|Ur

F(a0) − Ub
F(a0) |

< 1 − Δf+δ +δ

definition: algorithm  is -accuracy improvable within class  if there 
exists an algorithm  that -improves on 

a0 δ 𝒜
a1 ∈ 𝒜 (δ, δ,0) a0

can improve accuracy by  percent for both groups without 
compromising on fairness

δ



accuracy- and fairness- improvability 

definition: fix any . the algorithm  constitutes a 
-improvement on the algorithm  if 

 , and 

Δr, Δb, Δf ∈ ℝ+ a1 (Δr, Δb, Δf )
a0

Ur
A(a1)

Ur
A(a0)

> 1 + Δr,
Ub

A(a1)
Ub

A(a0)
> 1 + Δb

|Ur
F(a1) − Ub

F(a1) |
|Ur

F(a0) − Ub
F(a0) |

< 1 − Δf+δ +δ

not legally relevant, but an interesting complement on the previous perspective

definition: algorithm  is -accuracy improvable within class  if there 
exists an algorithm  that -improves on 

a0 δ 𝒜
a1 ∈ 𝒜 (δ, δ,0) a0

can improve accuracy by  percent for both groups without 
compromising on fairness

δ



what we want to evaluate 

: algorithm  is not -fairness (or accuracy) improvable within class H0 a0 δ 𝒜

our goal is to evaluate the accuracy- and fairness-improvability of a status quo 
algorithm within a given class of algorithms

formally, we will test the null hypothesis



proposed 
approach 



Data

Step 1: 
 
Randomly split the data into 
train and test sets.

our proposed procedure 

Train

Test

β

1 − β



Candidate 
algorithm a1

Step 2: 

Identify a candidate algorithm  
using the training data and (possibly) 
the status quo algorithm .

a1

a0

Status quo 
algorithm a0

our proposed procedure 

Data
Train

Test

β

1 − β



our proposed procedure 

Candidate 
algorithm a1

Status quo 
algorithm a0

Data
Train

Test

β

1 − β

Step 3: Test whether  constitutes 
an -improvement on 

a1
(Δr, Δb, Δf ) a0



our proposed procedure 

Candidate 
algorithm a1

Status quo 
algorithm a0

Data
Train

Test

β

1 − β

Step 3: Test whether  constitutes 
an -improvement on 

a1
(Δr, Δb, Δf ) a0

plug in  or 
 depending on 

which is the desired null

(Δr, Δb, Δf ) = (0,0,δ)
(Δr, Δb, Δf ) = (δ, δ,0)



our proposed procedure 

Candidate 
algorithm a1

Status quo 
algorithm a0

Data
Train

Test

β

1 − β

Step 4: Repeat steps 1-3 
 times, and obtain 

. 

Define 
 

and reject if . 

K
(p1, …, pK)

p = median {p1, …, pK}
p <

α
2



guarantees for this procedure (informal)

under regularity conditions, this procedure is asymptotically valid 
i.e., for any desired guarantee , the probability of rejecting (under 
the null) is no more than  (in the limit as the sample grows large) 

when the approach for finding a candidate algorithm is “sufficiently 
powerful,” then the procedure is also consistent 

i.e., if the null is false, then it will be rejected with probability 
converging to 1 as the sample grows large 

α
α

: algorithm  is not -fairness (or accuracy) improvable within class H0 a0 δ 𝒜

recall the null hypothesis



empirical application 

we already introduced the Obermeyer et al., (2019) data 
 is a patient’s medical profile 
 is whether the patient is White or Black 
 is the patient’s number of active chronic illnesses in the next year 
 is a decision of whether to automatically enroll the patient in a care 

management program 

the status quo algorithm is the hospital’s algorithm (assigns 3% of patients to 
care) 

we apply our approach to evaluate the improvability of this algorithm within 
the class of algorithms  that also enrolls 3% of patients

X
G
Y
D

a : 𝒳 → {0,1}



accuracy and fairness 

following Obermeyer et al., (2019), let 
 
 
i.e., expected number of illnesses for patients in group  who are assigned to 
the program 

 

an algorithm is: 
more accurate if the expected number of health conditions is higher 
among both Black and White patients assigned to the program 
more fair if it reduces the disparity in the expected number of health 
conditions among Black and White patients assigned to the program

g

Ug
A(a) = Ug

F(a) = E[Y ∣ a(X) = 1,G = g]



a first look 

Ub

U
w

hospital’s 
algorithm



alternative 
algorithms

applying our procedure 

Ub

U
w

our procedure yields   reject the null (that the status 
quo algorithm is not FA-dominated) for 

p < 0.001 →
α = 0.05

more detail



-fairness improvabilityδ

can further explore the tradeoff between improvements in accuracy and fairness by 
subsequently testing for -fairness improvability, where we allow  to vary 

i.e., is it possible to improve on fairness by at least  percent without 
compromising on accuracy?

δ δ
δ

can reject the null for all δ ≤ 0.68

possible to halve disparate impact 
without compromising on accuracy!

δ

p

-value in a test of -fairness improvabilityp δ



-accuracy improvabilityδ

now conduct same exercise, but for -accuracy improvability 
i.e., is it possible to improve on accuracy by at least  percent for both 
groups without compromising on fairness?

δ
δ

can only reject the null for δ ≤ 0.075

binding dimension turns out to be 
accuracy for Black patients

δ

p

-value in a test of -accuracy improvabilityp δ



takeaways 

it is possible to simultaneously strictly improve on the accuracy and the 
fairness of the status quo algorithm 

large improvements in fairness are possible without compromising on 
accuracy, while the reverse is not true

in this application:
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summary 

the CS literature often formulates fairness metrics similar to the ones we’ve 
been looking at so far, or sometimes in the even more stringent form

max accuracy 
subject to  G ⊥ D

demographic parity



summary 

the CS literature often formulates fairness metrics similar to the ones we’ve 
been looking at so far, or sometimes in the even more stringent form

max accuracy 
subject to  G ⊥ D ∣ Y

equalized odds



summary 

the CS literature often formulates fairness metrics similar to the ones we’ve 
been looking at so far, or sometimes in the even more stringent form

max accuracy 
subject to (statistical condition) 



summary 

the CS literature often formulates fairness metrics similar to the ones we’ve 
been looking at so far, or sometimes in the even more stringent form

max accuracy 
subject to (statistical condition) 

a long tradition in moral philosophy and economics instead measures social 
welfare by aggregating across individuals in society 

fairness considerations stem from contemplating how an individual would choose 
to structure society prior to the realization of own identity (i.e., “behind the veil”) 

  
the individual’s ex-ante payoffs are , where  is the ex-post utility for an 
individual with identity , and the expectation is with respect to randomness in the 
realization of this identity 

concave  returns a preference for fairness

E[ϕ(Ui)] Ui
i

ϕ



summary 

can the CS perspective be motivated as the choices of someone from 
behind the veil of ignorance? 

we formalize a sense in which the answer is no 

does not necessarily suggest that the CS perspective is misguided, but does 
suggest that novel justifications would be required (open question)



thank you 


